Skip to content

Energy Reduction Strategies for Catalytic Reactors – Part 1

Tom Higley, Technical Sales Manager at CALGAVIN will be discussing opportunities for energy reduction in catalytic reactors across a two part article. Part one will cover details on the process, energy saving opportunities and some of the design challenges associated with this.


A catalytic reactor is a form of a plug flow reactor involving complicated treatment. For all chemical reactors a chemical reaction is contained within a vessel. The rate of this reaction is proportional to the amount of catalysts the reagents contact, as well as the concentration of the reactants. Another important factor is the inlet temperature of the feed (reagents); this temperature needs to be equal to the activation temperature for the reaction to occur effectively.

In order to maintain this inlet feed temperature a heat exchanger known as a feed/effluent exchanger followed by a fired heater preheats the feed to the required inlet temperature. Once the reaction takes place the effluent of the reactor then enters the feed/effluent exchanger heating the feed entering the exchanger on the opposite side. The effluent stream is then further cooled by an effluent cooler before it reaches a separator where the liquid product is separated. The vapour phase is then recycled via a gas compressor and back in to the feed stream to be processed again.

Any excess product in the vapour phase that cannot be compressed is also purged off. For a Process Flow Diagram please refer to Fig 1 which illustrates the process. The feed/effluent exchanger is circled in red.

PFD of process

Energy Saving Opportunities

In many processes there are opportunities to reduce energy and to determine this a fundamental question needs to be asked; where is the energy consumed within the process? For this particular process energy is consumed by the fired heater in preheating the feed stream. The gas compressor will also consume energy in compressing the gas to recover the pressure loss from the feed stage to the point it reaches the compressor.

There is another plant section that needs to be investigated other than the reactor, which is the feed/effluent exchanger. This exchanger is also preheating the feed before the fired heater and it begs the question if the heat transfer is improved upon within the exchanger what affect does this have upon the whole process? If there is further heat recovery made by the feed/effluent exchanger the affects would be:


With good benefits to the process associated with efficient heat transfer there is an emphasis that a good design is needed for a feed/effluent exchanger. However the design is not straight forward due to a combination of theoretical assumptions being made, and the accuracy of the estimating models for heat transfer and pressure drop in comparison to reality.

Compared to single phase correlations, two phase heat transfer and pressure drop correlations can have accuracy of + or – 14%. The accuracy dependency of the physical properties and heat release curve for the process fluids are very important. Assumptions are also made in these correlations on good mixing of the two phases and uniform flow through the tube bundle, when in reality this is not the case. Phase separation and maldistribution can occur within heat exchangers reducing the heat transfer to that of the design estimates.

The impact of fouling upon heat transfer and pressure drop is an additional issue which has been difficult to estimate, but none the less it is still very important to gauge. Also a form of fouling, chemical corrosion of heat exchangers can occur through reactions taking place between hydrogen and the metal leading to embrittlement. This chemical corrosion can lead to complicated mechanical design and to compensate for increases and large variations in mechanical design pressures and temperatures, mechanical design is further complicated.

Fundamentally Fig 2 shows the ideal scenario for a temperature cross to provide efficient heat transfer. This re-emphasises the importance of accurate physical properties and heat release curves of process fluids. Many process fluids have non-linear heat release curves and inaccuracies can assume correct heat flow, when in reality internal temperature crosses can occur promoting heat flow reversal.

image of temperature cross graph

The last design challenge is the fact that the catalyst over time will degrade and to compensate for the reduction in performance, the inlet temperature of the feed stream needs to be increased. So when designing feed/effluent exchangers the heat transfer margin needs to take into account an increasing duty demand over time until the catalyst needs to be replaced which incurs a large expense.